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I. INTRODUCTION

Since World War 11, there has been an ever increasing need for
faster and more accurate methods of estimating the aerodynamic proper-
ties of aircraft, missiles and ordnance projectiles. Prior to the last
decade, this need was met by systematic compilations of available data,
by calculations based on theoretical flowfield solutions, and by combi-
nations of the above,

In recent years the proliferation of large and powerful computing
machinery has generated widespread interest in implementing faster, more
uniform, and more accurate aerodynamic estimates. Approaches based on
flowfield calculation!,? offer the long range prospect of improved accu-
racy and uniformity of approximation for arbitrary projectile shapes.
However, even with the more advanced computers, this approach 1s usually
quite lengthy, applicable only over specified ranges of Mach number,
Reynolds number and yaw level, and difficult to apply to real, non-
smoothly contoured ordnance projectile shapes.

Aerodynamic data can always be fitted to polynomials; the process
1s rapid--even on modest-size computers--and often produces extremelVy
good fits3,", However, it is inherently dangerous to extrapolate such
polynomial fits beyond the original data base. When extrapoclation 1s
required, the data should be fitted to equations founded on theory and
valid across the extrapolated region.

In this report, a relationship between the zero yaw drag coefficient
and Mach number is obtained from certain aerodynamic similarity rules.
This relationship involves (a) certain shape and size parameters and (b)
additional parameters whose values have been determined by least squares.

1. F. G. Moore, "Body Alone Aerodynamics of Guided and Unguided Projec-
tiles at Subsonie, Transonic and Supersonic Mach Numbers,” Naval
Weapons Laboratory Technical Report TR-279€, November 1972.

(AD 754088)

2. R. L. MeCoy, "Estimation of the Statie Aerodynamic Characteristics
of Ordnance Projectiles at Supersonic Speeds,” Ballistic Research
Laboratories Report 1682, November 1973. (AD 771148)

3. R. H. Whyte, "SPIN-73, An Updated Version of the Spinmner Computer
Program," Picatinny Arsenal Contractor Report TR-4588, November
1873. (AD 815628L)

4. E. 5. Sears, "An Empirical Method for Predicting Aerodynamic Coef-

fieients for Projectiles - Drag Ceoeffiecient,” Air Force Armament
Laboratory Technical Report TR-72-173, August 1972. (AD 804587L)
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These least square values are valid over a Mach number range of 0.5 to

5 and a projectile diameter range of 4 to 400mm. Thus, within these
ranges, the drag coefficient can be computed directly - that is, without
any additional fitting process - for a given set of size and shape pa-
rameters. The program MC DRAG performs this computation. The program
will be applied to three illustrative examples: a small arms bullet, a
re-entry vehicle model, and an artillery shell.

II. THE PHYSICAL NATURE OF DRAG

The simplest approach to separation of drag into component parts
is to examine forces normal to the projectile surface and those tan-
gential to the surface. The drag arising from pressure forces acting
normal to the surface we call pressure drag, or wave drag, and the
tangential drag force due to viscosity we call viscous drag, or skin
friction drag. For a projectile consisting of a nose, a cylindrical
afterbody, a rotating band, and a boattail or conical flare tail, the
pressure drag is the sum of the pressure drag forces due to each pro-
jectile component. Thus, our zero-yaw drag coefficient takes the form:

C., =C, +C + C, +C + € >
Dy Dy Dpr D Prg Psp
where CD = total drag coefficient at zero angle of attack
0
CD = pressure drag coefficient due to projectile head (nose)
H
CD - pressure drag coefficient due to boattail (or flare)
BT
CD = pressure drag coefficient due to the blunt base
B
CD = pressure drag coefficient due to a rotating band
RB
CD = skin friction drag coefficient due to the entire
SF projectile wetted surface (excluding the ba:c)

The behavior of all the above components of drag is strongly de-
pendent on free stream Mach number; the skin friction drag and the base

drag depend on Reynolds number as well.

Some general comments can be

made about the behavior of specific drag components in various speed

Tegimes.
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The pressure drag is associated with the amount of energy necessary
to continuously form the wave system as the projectile moves through the
air. At sufficiently low (incompressible) speeds, the net pressure drag
acting over the projectile wetted surface, including the base, obeys
d'Alembert's paradox; if the fluid is inviscid, the drag 1s zero. How-
ever, the near wake of a blunt-based body is a region of separated flow;
hence, a base drag is experienced by the projectile even at Incompress-
ible speeds.

As the projectile speed is increased, the effects of compressibil-
ity begin to appear. Since more energy must be supplied to maintain a
wave system in a compressible fluid, the drag begins to rise. Eventu-
ally a free stream speed will be reached that produces local sonic flow
at some point on the projectile, and this speed marks the beginning of
the transonic regime. Further increases in speed are accompanied by the
formation of shock waves, which require significantly more energy to
maintain, and the effect on drag is a sharp rise after the first appear-
ance of shocks. Finally, a free stream speed is reached above which the
local flow speed along the surface is everywhere supersonic, and this
speed marks the beginning of the supersonic regime.

In summary, the pressure drag coefficient, exclusive of the base,
1s zero at low subsonic speeds, rises sharply at transonic speeds, then
slowly decreases with increasing supersonic speeds. The near wake be-
hind a blunt-based projectile is a reduced pressure region, or partial
vacuum. At very low subsonic speeds, the base pressure is only slightly
less than free stream static pressure; at sufficiently high supersonic
speeds, the base pressure approaches zero. Thus, the base drag coeffi-
cient 1s important in all flow regimes.

The skin friction drag of a projectile depends primarily on Reynoids
number, and to a lesser extent on compressibility. A projectile with a
fully turbulent boundary layer will experience a significantly higher
skin friction drag than one with a laminar boundary laver. 1In either
case, increasing free stream speed decreases the skin friction drag co-
efficient.

The qualitative behavior of the various components of the drag
coefficient for a typical artillery projectile is shown in Sketch 1.

11



MACH NUMBER

Sketch 1. BRehavior of the Various Components of Drag

In the following sections, similarity parameters suitable for
correlating the various individual components of drag are examined in
detail. |

III. PRESSURE DRAG COEFFICIENT FOR A PROJECTILE NOSE

The wave drag of a pointed conical nose at supersonic speeds is well
known from Taylor-Maccoll theory®, and the head drag coefficients of
conical noses can be readily correlated with Mach number by means of
Gothert's similarity rule®:

Cy MJ%-1) = f (/M 2-1, 1), (1)
H
where 1 = i%—, or thickness ratio
N
M = free stream Mach number

oo

il

5. G. I. Taylor and J. W. Maccoll, "The A1y Pressure on a Cone Moving
at High Speeds,"” Proe. Roy. Soc. A., Vol. 139 (1933), pp. £278-311.

§. M. J. Van Dyke, "The Similarity Rules for Second-Order Subsonic and
Supersonic Flow," NACA Technical Note 3870, October 1356.

12



LN = length of conical head (calibers)

f( ) means a function of ()

Equation (1) also correlates the head drag coefficient with Mach num-
ber for pointed ogival noses. Conical flow results for a wide range of
free stream Mach numbers and thickness ratios are available7} and a num-
ber of unpublished calculations for pointed ogives have been performed
at BRL using the method of characteristics and second-order perturbation

theory®. Over the Mach number range from one to four, and for thickness
ratios less than two, the following correlation was obtained using non-
linear squares:

(C3+C4T)
Cp M2-1) = (C;-C,7?) [t/M 2-1] (2)
H
where C, = .7156 - .5313(R,/R) + .5950(RT/R)2
C, = .0796 + .0779 (R./R)
C. =

3 = 1.587 + .049(R /R)

)
1

4 L1122 + .1653(RT/R)

The quantity (RT/R) 1s a headshape parameter; it is the ratio of the tan-

gent radius for the same head length to the actual ogive radius. Thus
(RT{R) = { for a cone, (RT/R] = 1 for a tangent ogive nose, and values

between 0 and 1 describe various secant-ogive shapes.

The standard deviation of the fit of Equation (2} is 5% in CD . S1Tce
!_l'

CD represents approximately 40% of the total CD for typical projectiles,
H 0

the use of this equation will result in less than 2% error in estimating

total drag coefficient at supersonic speeds. Figure 1 shows the corre-

lation of the available data with Equation (2). The flagged symbols in

Figure 1 are for noses shorter in length than one caliber, and these

blunt noses represent the largest errors in using Equation (2). 1If

thickness ratio i1s restricted to be less than one, the standard errors

quoted above will be reduced by a factor of two.

7. R. F. Clippinger, J. H. Giese and W. C. Carter, "Tables of Super-
sonte Flows About Cone Cylinders: Part I, Surface Data," Ballistic
Research Laboratories Report 728, July 1850.
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Equation (2) can be readily modified to account for the effects of

legd%ng edge bluntness. For a blunt leading edge (meplat), let the
originally pointed nose be opened up to a meplat diameter, d,, as shown

in Sketch 2,

I | CALIBER
TL = |
—

Sketch 2. Geometry of a Blunt Leading Edge Nose

Since thickness ratio, 1, equals twice the average slope along the
nose, T can be redefined as:

o 9
T = , (3)
N

where dM is méplat diameter (calibers). In addition to the redefinition

of 1, Equation (2) must be corrected by adding to Cp the effect of

H
stagnation pressure acting on the flat leading face of the blunted nose.
Equation (2) with T redefined and the stagnation pressure correction
added becomes:

_ ) (C.+C T)
e o= C19y Mz T s TRl (4)
H M 2-1 S

o0

D

where Cp is the stagnation pressure coefficient, and X is a correction
S
for pressure ''leakage' off the flat face. Charters and Stein® suggested

8 A, C. Charters and H. Stein, "The Drag of Projectiles with Truncated

Cone Headshapes,” Ballistic Research Laboratories Report £24, March
1952, (AD 800468)
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a value of 0.9 for K. Dickinson’ reported the experimental results of
méplat firings with both conical and ogival noses. A least squares fit
of the data of reference 9 to Equation (4) yields a value of 0.75 for K
at supersonic speeds. The correlation is shown in Figure 2.

The recent successful attack on axisymmetric transonic flows by Wu,
Aoyama, and Moulden!® at the University of Tennessee Space Institute pro-
vides the background for an attempt at transonic data correlations. The
similarity rule for the head drag coefficient of slender transonic noses
was derived by Cole, Scolomon, and Willmarth!!l:

D M _2-1
— + 1n r = f —
73 (Y+1)Mm2T2

] (5)

Wu, Aoyma, and Moulden measured pressure distributions along slender
ogival noses and showed good agreement between their numerical solution
of the transonic small disturbance equation and experiment. Equation (5)
correlates the head drag and thickness ratio data of reference 10 very
well, since the data were taken only for slender noses. At M =1,

Equation (5) predicts a correlation of CD with -t31nt as shown in

Sketch 3. H

Mm - |0 V4
/f
/
/“~ EXPECTED
Coy, _/” TRUE BEHAVIOR

EQUATION (5)

Sketch 3. Slender-Body Correlation of Transonic Wave Drag

9. E. R. Dickinson, "Some Aerodynamic Effects of Blunting a Progjectile
Nose,! Ballistic Research Laboratorites Memorandum Report 1586,
September 1964. (AD 451977)

10. J. M. Wu, K. Aoyama, and T. H. Moulden, "Transonic Flow Fields
Around Various Bodies of Revolution Including Preliminary Studies
on Viscous Effects With and Without Plume,” U. S. Army Misstile
Command Report RD-TR-71-12, May 1971. (AD 729335)

11. J. D. Cole, G. E. Solomon, and W. W. Willmarth, "Transonic Flows
Past Simple Bodies,'" Journal of the Aeronautical Sctences, Vol. 20,
No. 9, 1853, pp. 627-654.

15



The slender-body similarity rule is obviously invalid for thickness
ratios of order 1, and, since many real vehicles are this blunt, a
better rule is needed.

Von Kdrm4dn!? derived a two-dimensional transonic similarity rule
using the exact equation from perturbation theory, hence not inherently
restricted to slender profiles. Von Kdrmdn's rule, in a slightly dif-
ferent form, is:

CD [(Y+1)Mm2]l/3 Maz_l

H '
_ = f — (6)
23 [(Y+1)Mm2T]2f3

Analogy between the two- and three-dimensional rules for supersonic
flows suggested the following form for an axisymmetric transonic simi-
larity rule:

T(Mmz-l)

I
D, F(t) + f [(Y+1)Mm2] . (7)

C

From the data of reference 10 at M_ = 1, the head drag coefficient

is found to vary as TQ/S. A least squares fit of the transonic head
drag coefficient yields the result:

o5 1-6T(M 2-1) |
CDH = ,3687 + (Y*l)M;zm_' ; (8)

1
valid for M_ > Mc’ where Mc = {1 + .552T4/S] 2

| The correlation of the transonic head drag data of reference 10 with
thickness ratio and Mach number is shown in Figure 3.

IV. PRESSURE DRAG COEFFICIENT FOR A BOATTAIL

The form of a similarity law for supersonic boattail drag was sug-
gested by expanding the second-order small disturbance equation in
series, for small values of the boattail angle, B. The result is:

~KL -kL
| - AAtans BT |, srang fe BT (L
Dy k

1 1
[C {(l-e + E} - -E]} (3)

BT

12. H. W. Liepmarm and A. Roshko, Elements of Gasdynamics, John Wiley
and Sons, 1957,

16



where [CD ] is the similarity parameter
BT

8 = Boattail angle (B is negative for a conical flare tail}
LBT = PBoattail length (calibers)
A = Change in boattail pressure coefficient due to a Prandtl-
Meyer expansion
k = Boattail pressure recovery factory

The form of the terms A and k in Equation (9) also resulted from
second-order theory, but contained unknown coefficients, which were ob-
tained from least squares fitting of boattail drag coefficients calcula-
ted by the method of characteristics. The results for the terms A and K

are.

2 L T 2 _ 2
A< A e' ™ 2 CYL , 2tanB [(F+1)M@_ﬂﬁ_4(ﬁﬁ _1}]t§E_E_
1 r 2_1 2(M_2-1)2
2 3

1 SM_ M 2.1 2 M&z e
L= . 85

llez—l
LCYL = l.ength of projectile cylinder section (calibers)
Al = Headshape correction factor for supersonic boattail drag

coefficient

Experimental boattail drag coefficlent values were obtained by nu-
merical integration of measured pressure distributions along conical boat-
tailst? 1%, Figure 4 shows the correlation of boattail drag coefficlent
with [CD 1 for supersonic speeds.

BT -

No similarity parameter applicable to boattails at transonic speeds
could be found in the literature, and, lacking anything else, a

13. K. Sedney, "Review of Base Drag,' Ballistic Research Laboratories
Report 1337, October 1966. (AD 808767)

14. J. Huerta, "An Experimental Investigation at Supersenie Mach Nwn-
bers of Base Drag of Various Boattail Shapes with Simulated Base
Roeket Exhaust,! Ballistic Research Laboratories Memorandum Report

1983, June 1969. (AD 855156)
17



modification of the form used for supersonic boattails was tried.
Sykes!® has measured pressure distribution on transonic boattails, and

integrated the pressures to obtain boattail drag coefficient values. A
fairly good correlation of Sykes' data was found with the similarity
parameter:

-2L -2L
] = 4tan?B (l+stanB) {1l-e BT, 2tang [e BT (Ly + %) - %]}

(C BT
(10)

Upt

The correlation must be performed for fixed Mach numbers, since no
explicit Mach number dependence appears in Equation (10}. Figure 5 shows
the correlation of Sykes' data for three transonic Mach numbers; the cor-
relation line for M_ = 0.9 is omitted from the figure since it nearly

coincides with the line for M_ = 1.1, The transonic boattail drag corre-

lation is obviously not as good as that obtained at supersonic speeds.

V. PRESSURE DRAG COEFFICIENT FOR A ROTATING BAND

Moore! conducted wind tunnel tests to determine the effect of a
rotating band on drag. Figure 6 shows the variation of rotating band
drag coefficient with Mach number. The drag coefficient increment for a
band is found by multiplying the curve of Figure 6 by (dRB - 1), where

dRB is the rotating band diameter, in calibers.

The rotating band is assumed to be located near the aft end of the
projectile cylindrical section, and a small error will result from using
the curve of Figure 6 to estimate the drag of a band located farther
forward on the projectile. The prediction of rotating band drag could
be improved by obtaining more experimental data on the effects of band
configuration and location. However, the band contributes less than 5%
of total drag on typical projectiles; hence refinement in the band drag
estimate 1is probably unjustified.

VI. SKIN FRICTION DRAG COEFFICIENT

The skin friction drag coefficient, CD , is given by;

Sk

4
C = —-C_ S, , (11)
DSF " F W

where C. = skin friction coefficient for a smooth flat plate

15, D. M. Sykes, "Experimental Investigation of the Pressures on Boat-
Tatled Afterbodies in Transonic Flow with a Low-Thrust Jet," Royal
Armament Research and Development Establishment Memorandwn 33/70,
Fort Halstead, Kent, England, December 1970.

18



Sw = projectile wetted surface area, exclusive of the base
[calibersz)

For a laminar boundary layer, the Blasius formulal®, with a cor-
rection for the effect of compressibility 1is:

12

2 -
Ce = l;é:ﬁ_(l + 1M 47 . (12)
L fReﬂ
where Cf = laminar skin friction coefficient
L
Re£ = Reynolds number, based on projectile length

Prandtl’'s empirical formulal® for a fully turbulent boundary layer,
corrected for compressibility, 1s:

C,. = 40> (1 + .21M 2)"32 , (13)
fT (1o Re )2.58 %
£10"%2
where Cf = turbulent skin friction coefficient

T

Schlichting!® shows good agreement between Fquation (13) and Van
Driest's more complete theoryl? for compressible turbulent boundary
layers adjacent to an adiabatic wall. Equation (13} is much easier to
use than Van Driest's result, which requires an iterative numerical
solution; hence (13) is selected for the present theory.

The wetted surface area of the projectile nose is given by the
approximation:

_ T 1 1 1
S, =5 Ly (I # T2 [1+ (z+ Sﬁf_?) (RT/R]] (14)
nose N N

For the mild boattails or conical flares permitted in the present
theory, the difference in wetted surface area between the actual boat-
tail or flare and that of an equivalent length circular cylinder 18
nepgligible. Hence the wetted surface area of the projectile afterbody

is approximated by:

16. H. Schlichting, Boundary Layer Theory, MeGraw-Hill, 19585.

17. E. R. Van Driest, "Turbulent Boundary Layers in Compressible
Fluids," Journal of the Aeronautical Sciences, Vol. 18, No. 3,

1851, pp. 145-160, Z216.



SW -, TI(LT - LN) 3 | (15]
cyl

where LT = overall length of projectile (calibers)

The Reynolds number, based on projectile total length, is5:

u_t

REE T 2 (16)

|

velocity of the free stream

where U_

£ = total length of projectile

V kinematic viscosity

Since U a M , where a 1is speed of sound in air, and £ =
oD o o Lr )

LTdREF’ where dREF is reference diameter of the projectile, the Reynolds
number can be written:

(17)

ReE = 23296,3 MmLT dREF )

where dREF must be in millimetres (mm)

Equation (17) gives the Reynolds number for sea-level conditions at a
temperature of 15°C.

The skin friction drag coefficient is computed for a fully laminar
boundary layer, and for a fully turbulent boundary layer, and a welghted
average taken, depending on the approximate location of transition. For
most ordnance projectiles, transitlon occurs either near the end of the
nose, or near the leading edge. Hence only two options are provided for
+he character of the boundary layer: (1) a fully turbulent case, and
(2) laminar flow on the nose and turbulent flow on the afterbody. This
is a user-specified option. Experience suggests that option (2} should
be specified for smooth projectiles under 20mm in diameter, and option
(1} for larger shell, but no infallible rule exists for making this
decision. Inspection of a spark shadowgraph of the projectile 1n ques-
tion is the most reliable method.

VII. BASE DRAG COEFFICIENT

Accurate estimation of the base drag coefficient requires an
equally accurate estimate of the ratio of base pressure to free stream
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static pressure. Chapman18 showed that for square-based projectiles at
supersonic speeds, the base pressure depends strongly on local approach
Mach number and on the character of the boundary layer just upstream of
the base. Most ordnance projectiles have turbulent boundary layers 1in
the vicinity of the base, and in reference 2 the author illustrated a
method of correcting the base pressure for boattail effects at super-
sonic speeds. The method used in reference 2 breaks down at low super-
sonic speeds: in addition, the present theory is designed to include
drag estimates at transonic and subsonic speeds, where the theory of
reference 2 is inapplicable.

No similarity parameter for correlating base pressure data could be
found in the literature, and for the present purpose a limited.study was
performed to determine an empirical result that accurately described the
existing data.

A large amount of high quality free flight total drag data is avail-
able at BRL from the firings of various models through the spark photog-
raphy ranges. The approach used to determine effective basc pressure in
the present study consisted of estimating all the other contributions to
drag by the methods outlined previously in Sections 11l and IV, and
subtracting from the measured total drag coefficients. An average base
pressure was then inferred from the derived base drag coefficient. The
ratio of inferred base pressure, PB’ to free stream static pressure, p_,

was found to correlate well with the empirical similarity parameter:

B “Levy
[E—J = [1+ .09M % (1 - e 31 [+ WM % (1-dp)], (18)
PB = Base pressure
p, = Free stream static pressure
d, = Projectile base diameter (calibers)

An attempt to correlate the effective base pressure data with
Reynolds number did not yield a significant correlation. Although this
result contradicts that found in references 2 and 18, the correlation of
the data with Equation 18 is sufficiently good to justify neglecting
Reynolds number effects.

P
A plot of [—E] versus free stream Mach number is shown in Figure

7. The plottedmdata points are averages of all available experimental

18. D. R. Chapman, "An Analysis of Base Pressure av Supersonic Veloci-
ties and Comparison with Experiment," NACA Report 10561, 13o1.
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data at the indicated Mach number. The correlation is valid for boat-
tail lengths up to 1.5 calibers, and for base diameters as small as 0.65
caliber.

The solid curve of Figure 7 was determined from a least squares
fit of the data. The estimate of base drag coefficient is now obtained
from the relation:

2d.° P
B B
Ch = (1 - —), (19)
DB YMmz P..
where CD = Base drag coefficient

B

The previous discussions on boattail drag and base drag coeffi-
cients refer only to conical boattails. It should be noted that the
present theory also predicts total drag coefficients accurately for
conical flare tails (dB > 1). This result provides a reasonable degree

of assurance that the semi-empirically derived similarity parameters for
boattail and base drag coefficients have some correspondence with physi-

cal Teality.

VIII. COMPARISON OF THE PRESENT THEORY WITH EXPERIMENT

In late December 1974, the author combined the results discussed 1In
Sections III through VII of this report into a FORTRAN IV computer pro-
gram, designed to provide rapid estimates of the drag coefficients of
ordnance projectiles. Before the program could be released for general
use, it had to be validated by comparison with experiment, for a fairly
large sample of previously tested configurations. G. Paul Neitzel, Jr.,
of the Free Flight Aerodynamics Branch, was given a copy of the program
and asked to assist in this task. Neitzel compared the present theory
and that of reference 1 with spark range data he had recently obtained!®
for the 30mm Hispano-Suiza HS831-L practice round; he also suggested the
name "MC DRAG" for the program, and this name was adopted by other mem-
bers of the Laboratory.

19. G. P. Nettzel, Jr., "derodynamic Characteristics of &imm HS5881-L
Ammnition Used in the British 30mm Rarden Gun,' Ballistic Research
Laboratories Memorandum Report 2466, March 1975. (AD B003737L)
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Figure 13 compares the theoretical and experiment319 effects of
leading edge bluntness (meplatting) on secant-ogive noses at subsonic,
transonic and supersonic speeds.

In Figures 14 through 24, the present theory and experimental re-
sults are compared for a number of different physical sizes and types
of ordnance projectiles. The agreement is generally quite satisfactory
for a program designed to give quick engineering estimates of drag.
Figure 25 shows the standard deviation (lo) of the MC DRAG program, as
determined by comparison with a large volume of free flight data, plot-

ted against Mach number. The standard deviation is about 6% in CD at
O

subsonic speeds, grows to a maximum of 11% at M_ = 0.95, and levels off

to a 3% error at supersonic speeds. The largest errors at transonic
speeds occur for boattailed projectiles, and this is believed to be
related to the lack of any good similarity parameter for correlating

transonic boattail effects.

IX. USER'S GUIDE FOR THE MC DRAG COMPUTER PROGRAM

The MC DRAG program* is designed to provide quick and reasonably
accurate engineering estimates of the drag of ordnance projectiles,
without the requirement of formal training in aerodynamics on the part
of the user. The program input has been simplified to a single input
card read per case, and the required projectile dimensilons are readily
obtained either from an assembly drawing or from measurements easily
made in the shop. Although no computer program can be made foolproof,
checks and warning prints have been included, to advise the unwary user
that the program is being pushed beyond its limits of applicability.

The single input card, illustrated in Sketch 4, contains the fol-
lowing data:

* A listing of the FORTRAN IV program, MC DRAG is given in the Appendix.
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Sketch 4. Il1lustrated MC DRAG Program Input
FORTRAN |

COL QUANTITY FORMAT COMMENTS

1-5 dREF F5.3 Reference diameter (mm)

6-10 LT Projectile total length (calibers)
11-15 LN Nose length (calibers}

16-20 RT/R Headshape parameter

21-25 LBT Boattail length (calibers)

26-30 dB Base diameter {calibers)

31-35 dM Méplat diameter (calibers)

36-40 dRB Rotating band diameter (calibers)
41-45 XCG l, Center of gravity (calibers from nose)
46-47 — BLANK
48-50 BLC A3 Boundary layer option (L/T or T/T}
51-70 — BLANK

71-80 CODE Al0 Alphanumeric identification
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The rules for obtaining projectile dimensions from drawings will be
illustrated, using three specific examples. For projectile designs
other than those usually encountered, some judgment must be exerclsed.
For example, a pure cone projectile would require that LT = LN’ RTZR =

0, LBT = (, dB = 1, dM = 0 (providing the cone 1s pointed}, dRB = 1.
A projectile with a hemispherical nose can be run, with L = 1 and
RT/R = 1, but this nose is too blunt for the program to give reasonable

accuracy, and a warning print will follow the output to so advise the
user. The MC DRAG program does not recognize the existence of a sub-
caliber, or boom, tail, and the boom of such a design should be 1gnored
in assigning total length. In general, nose lengths shorter than one
caliber will produce warning prints, as will boattails longer than 1.5
calibers, or base diameters less than 0.65 caliber.

The first example projectile is an experimental low-drag small arms
bullet, the 5.56mm BRL-1 design (see Figure 16). The bullet drawing
shape, as given in reference 24, is reproduced below. The reference

DIMENSIONS IN CALIBERS

;;L' @3&59"***

548 —— "
BRL - |

Sketch 5. Projectile Drawing, 5.56mm, BRL-l

r—

24, W. F. Braun, "Aerodynamic Data for Small Arms Projectiles,”
Ballistic Research Laboratories Report 1630, January 1873.
(AD 908757L)
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diameter is given as 0.224 inch, or 5.69mm. Total length is 5.48 cali-
bers, nose léngth is 3.0 calibers. The headshape parameter, RT/R, 1s

found as follows. The ogive generating radius is given as 18.55 cali-
bers. The radius RT is the radius of a tangent ogive nose having the

same length. For a pointed tangent ogive nose of length LN’ the length

and radius are related by the following equation:

Ry = (Ly)® + % (20)

If the actual nose of the projectile is not sharply pointed, extend
it to a point (a graphic extension is sufficiently accurate for this
purpose), and determine the length, L, that the nose would have if it

were sharply pointed. Then compute R from Equation 20, and divide by
R from the drawing to get RT/R.

NOTE: For an actual tangent ogive nose, R = Rp, hence RTXR = 1.
For a conical nose, R=+ =, and RT/R g 0. Hence no calculation 1s

required for either of these nose shapes.

F

For the pointed BRL-1 design, LN = LN 3.0 calibers, and R =

(3.0)¢ + % = 9,25 calibers. Hence, RT/R = §.25/18.55 = 0.50. This 1s

essentially a minimum drag nose shape at supersonic speeds.

The boattail length for BRL-1 is 1.0 caliber, and the boattail
angle is 7 degrees; hence, the base diameter is 0.754 caliber. The nose
is essentially sharp-pointed, thus méplat diameter is zero. There is no
rotating band, so dRB = 1.0. The center of gravity is 3.34 calibers

from the nose and this value is included in the input as identification
information. Since the reference diameter is much smaller than 20mm,
and the projectile surface is relatively smooth, the expected {verified
by shadowgraphs). boundary layer option js L/T: laminar nose, turbulent

afterbody.

The output of the MC DRAG program for the BRL-1 projectile 1s
shown as Figure 26. The total drag coefficient and component parts are
tabulated for pre-selected Mach numbers. The last column is the program
estimate of the ratio of base pressure to free stream static pressure.

(Note: the computer program uses the notation CDBND for C_. ). The

Do

c?mparison of MC DRAG with experimental results for BRL-1 is shown in
Figure 16.
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The second example projectile is a scale model of a Minuteman re-
entry stage vehicle, which was fired through the BRL Transonic Range
for aerodynamic data determination. The model drawing shape as given

in reference 25 is reproduced below.

N DIMENSIONS IN CALIBERS
o
s, 2 |
2° 30
93 R

110} —4-— 967

- 3248

MINUTEMAN

Sketch 6. Projectile Drawing, 55mm Minuteman Model

NOTE: The base diameter shown on the drawing in reference 25 is
incorrect; the correct base diameter (Sketch 6} is obtained from the
length and angle of the flare tail. The MC DRAG program user is ad-
vised to check all drawing dimensions for internal consistency, as a

surprising number of errors have been found in report drawings.

The reference diameter of the Minuteman model is 55.6mm. Total
length is 3.25 calibers, nose length is 0.967 caliber. The nose 1is
conical, hence RT/R = 0. The flare (boattail) length is 1.18 calibers,

and the correct base diameter is 1.63 calibers. The nose has an 1in-
scribed hemispherical tip, which is not recognized by MC DRAG . The
proper procedure for this case 1s to extend the actual nose out to the
leading edge, and determine the meplat diameter of the extended nose.
The geometry of the extension for the Minuteman model is shown 1in

Sketch 7.

—

25. E. D. Boyer, "Free Flight Range Tests of a Minuteman Re-Entry Stage
Model,'" Ballistic Research Laboratories Memorandum FKeporti 1346,

May 1861. (AD 326744)
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o——— 967 ———

MINUTEMAN, NOSE DETAILS

Sketch 7. Minuteman Model, Nose Detail

The effective méplat diameter of the Minuteman model nose is (.20

caliber. There is mo rotating band, so dRB = 1.0, and the center of

gravity is 1.76 calibers from the nose. Since reference diameter 1is
larger than 20mm, choose T/T for the boundary layer option.

The output of MC DRAG for the Minuteman model is shown as Figure
34. The program warning print tells us that this nose is really too
blunt for an accurate drag estimate with MC DRAG . In addition, the
predicted ratio of base pressure to free stream static pressure shows
negative values at high supersonic speeds, which is physically erroneous,
and suggests that this flare is probably too steep for the program.
Nevertheless, the comparison between MC DRAG and experiment, shown 1n
Figure 21, indicates better accuracy than would be expected for a design
that violates the program limitations.

The last example projectile is the 155mm long-range artillerv
shell, M549. The projectile drawing shape is shown in Sketch 32€

26. R. Kline, W. R. Herrmann and V. Oskau. "A Determination of the Aero-
dynamic Coefficients of the 155mm, M549 Projectile," Pileatinny

Arsenal Technical Report 4764, November 1974. (AD B002073L)
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DIMENSIONS IN CALIBERS
L e

155 MM, M549 PROJECTILE

Sketch 8. Projectile Drawing, 155mm M549 Projectile

The reference diameter is 155mm, total length is 5.65 calibers,
nose length is 3.01 calibers. If the ogive nose 1is extended to a sharp
point (ignore the fuze for headshape parameter calculation), a pointed

nose length, LN,Df 2.03 calibers is obtained. Thus RT = 9,43 calibers,
and RT/R = 0.50, The boattail length is .58 caliber, base diameter 1is

0.848 caliber, and the méplat diameter is given as 0.09 caliber. The
rotating band diameter is 1.02 calibers and the center of gravity 1s
3.53 calibers from the nose. The proper boundary layer option 1s again

T/T.

The MC DRAG output for the M549 projectile is shown as Figure 28.
The comparison of MC DRAG with experiment for this projectile 1s shown
in Figure 23.
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X. CONCLUSIONS

Comparisons of MC DRAG with experimental data have demonstrated
the ability of the program to estimate accurately the effects of sys-
tematic changes in projectile configuration. Additional comparisons of
the program with alternative theoretical methods show MC DRAG to be
a8s good as or better than the competitive methods for conventional pro-
jectiles. The limits of applicability of MC DRAG are believed to be
wider than those of any competitive approach. The MC DRAG program esti-
mates the drag coefficient of typical ordnance projectiles to within

9

s error (lo) at supersonic speeds, 11% error at transonic speeds, and
6% error at subsonic speeds.
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Figure 1. Correlation of Supersonic Head Drag Coefficients
with Mach Number
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Figure 5. Correlation of Transonic Boattail Drag Coefficient
With the Similarity Parameter
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REF

LIST OF SYMBOLS

Speed of sound in the free stream

Change in boattail pressure coefficient due to a
Prandtl-Meyer expansion

Headshape correction factor for supersonic boattail
drag coefficient

Boundary layer code in "MC DRAG" input
Correlation parameters for head drag coefficient

Total drag coefficient at zero angle of attack
Pressure drag coefficient due to projectile head (nose)
Pressure drag coefficient due to boattail (or flare)
Pressure drag coefficient due to the blunt nose
Pressure drag coefficient due to a rotating band

Skin friction drag coefficient

Skin friction coefficient for a smooth flat plate

Laminar skin friction coefficient
Turbulent skin friction coefficient
Stagnation pressure coefficient

Projectile base diameter (calibers)
Rotating band diameter (calibers)
Méplat diameter (calibers)

Projectile reference diameter (mm)
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LIST OF SYMBOLS (continued)

Denotes a functional dependence on the quantity ( )
Denotes a functional dependence on the quantity ( )
Boattail pressure recovery factor

Stagnation pressure correction coefficient
Projectile total length (mm)

Boattai]l (or flare) length (calibers)

Projectile cylinder length (calibers)

Projectile nose length (calibers)

Length of nose if extended to .a sharp point (calibers}
Critical Mach number for the onset of transonic flow
Free stream Mach number

Free stream static pressure

Base pressure

Ogive radius of projectile nose (calibers]

Tangent ogive radius (calibers)

Reynolds number, based on projectile length
Projectile wetted surface area (calibers?)

Free stream speed

Center of gravity location (calibers from nose)

Boattail angle
Ratio of specific heats
Kinematic viscosity

Nose thickness ratio
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